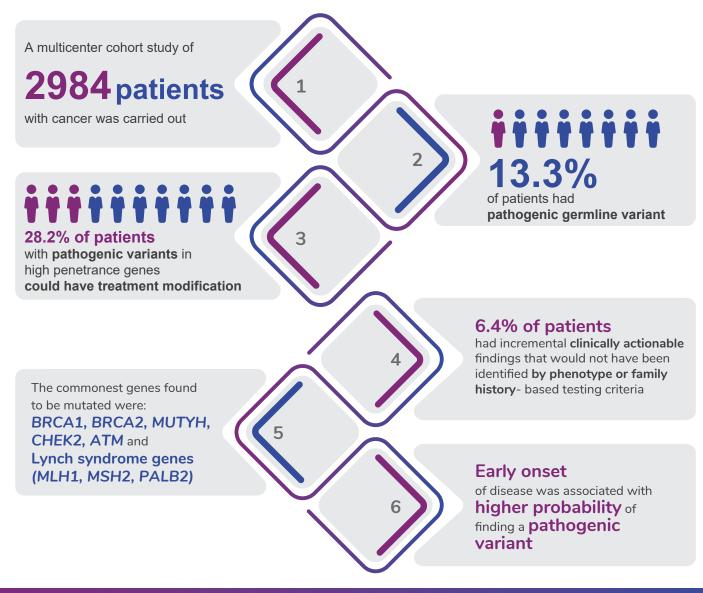


Cancer Risk and Hereditary Cancer Genetic Test

NGS based comprehensive analysis of cancer predisposing genes (SNVs, InDels & CNVs)

Indications


- Hereditary Breast & Ovarian Cancer Syndrome
- Paragangliomas
- MEN Syndrome
- Lynch Syndrome

- Nervous System Cancer
- Endocrine Cancer
- Pancreatic Cancer
- Renal Cancer
- Von-Hippel Lindau syndrome
- Prostate Cancer
- Thyroid Cancer
- Gynaecological Cancer
- Li-Fraumeni Syndrome
- Juvinile Polyposis
- Peutz-Jeghers
- Retinoblastoma
- Hereditary Nonpolyposis Colorectal Cancer

Testing criteria

- Personal medical and/or family cancer history meets criteria for more than one hereditary cancer syndrome
- Family cancer history does not meet established testing guidelines, but consideration of inherited cancer risk persists and an appropriate panel is available
- Individuals with multiple cancer diagnoses
- Individuals concerned about cancer predisposition for whom family cancer history is limited or unknown
- Second-line workup for inherited cancer risk when first-line evaluation has been inconclusive

Universal genetic testing vs Guideline-based testing for patients with Hereditary Cancer Syndrome

Universal testing among patients with solid tumor was associated with an increased detection of heritable variants over the predicted yield of targeted testing based on guidelines

Reference: Samadder NJ, Riegert-Johnson D, Boardman L, et al. Comparison of Universal Genetic Testing vs Guideline-Directed Targeted Testing for Patients With Hereditary Cancer Syndrome [published online ahead of print, 2020 Oct 30]. JAMA Oncol. 2020;e206252. doi:10.1001/jamaoncol.2020.6252

North Indian BRCA germline testing data (n=236)

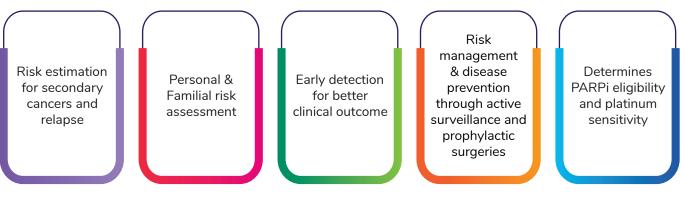
Ann Surg Oncol https://doi.org/10.1245/s10434-021-10870-w Annals of SURGICALONCOLOGY

ORIGINAL ARTICLE – TRANSLATIONAL RESEARCH

Profile of Pathogenic Mutations and Evaluation of Germline Genetic Testing Criteria in Consecutive Breast Cancer Patients Treated at a North Indian Tertiary Care Center

Abhenil Mittal, MD, DM¹, S. V. S. Deo, MS, MCh², Ajay Gogia, MD, DM¹, Atul Batra, MD, DM¹, Akash Kumar, MD, DM¹, Sandeep Bhoriwal, MS, MCh², Koushik Sinha Deb, MD², Ekta Dhamija, MD⁴, Sanjay Thulkar, MD⁷, V. L. Ramprasad, PhD⁷, Olufunmilayo Olopade, MD, FACP⁶, and Raja Pramanik, MD, DM¹ ⊚

¹Department of Medical Oncology, Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Dethi, India: ²Department of Surgical Oncology. All India Institute of Medical Sciences, New Dethi, India: ³Department of Psychiatry, All India Institute of Medical Sciences, New Dethi, India: "Department of Radiodiagnosis, All India Institute of Medical Sciences, New Dethi, India: "Medgenome Labs Ltd, Bangalore, India: "Center for Clinical Cancer Genetics and Global Health, University of Chicago, Chicago, IL.


- The prevalence of pathogenic mutations in breast cancer patients is higher in Indian patients compared with most other populations.
- Testing by NGS is recommended at a centralized CAP- and/or CLIA-certified laboratory for all patients followed by reflex MLPA for all patients if negative by NGS
- Pre and post genetic counseling

Results

Overall, 275 breast cancer patients were screened and 236 patients were included (median age 45 years); 30 patients did not consent and 9 patients previously underwent genetic testing. Thirty-four (14%) women had a positive family history and 35% had triple-negative breast cancer. P/LP mutations were found in 44/236 (18.64%) women; mutations in BRCA1 (22/47, 46.8%) and BRCA2 (9/47, 19.1%) were the most common, with 34% of mutations present in non-BRCA genes. Patients qualifying the testing criteria had a higher risk of having a P/LP mutation (NCCN: 23.6% vs. 7.04%, p = 0.03; MCG plus: 24.8% vs. 7.2%, p = 0.01). The sensitivity of the NCCN criteria was 88.6% (75.4–96.2) and 86.36% (72.65–94.83) for MCG plus. More than 95% sensitivity was achieved if all women up to 60 years of age were tested. Cascade testing was performed in 31 previous (16/44 families), with 23 testing positive.

Testing by guidelines may miss 11-13% of patients carrying high risk mutations.

Clinical benefits

Germline test details

Test Code	Test Name	Technology	Test Information	TAT
MGM194	Hereditary cancer panel (BRCA1 and BRCA2 along with other 143 genes)	Next Generation Sequencing	Complete coding regions and intron exon boundaries of 143 genes including BRCA1 and BRCA2 genes covered	21 working days
MGM1841	Comprehensive Hereditary Cancer panel	Next Generation Sequencing	Mutation analysis of 143 genes and deletion/duplication analysis of 30 genes including BRCA1 and BRCA2 genes	21 working days

Sample Type: 3-4 ml of Peripheral blood in EDTA tube shipped at room temperature

Gene list

COMPREHENSIVE HEREDITARY CANCER PANEL GENE LIST (143 genes covering SNVs, InDels, CNVs)							
ABRAXAS1	CDK12	ERCC3	GALNT12	MUTYH	PRKAR1A	SBDS	TSC1
AIP	CDK4	ERCC4	GATA2	MXI1	PRSS1	SDHA	TSC2
ALK	CDKN1B	ERCC5	GPC3	NBN	PTCH1	SDHAF2	TYR
APC*	CDKN1C	EXT1	HOXB13	NF1	PTCH2	SDHB	VHL
AR	CDKN2A	EXT2	HRAS	NF2	PTEN	SDHC	WRN
ATM	CEBPA	EZH2	KIF1B	NSD1	RAD50	SDHD	WT1
AXIN2	CEP57	FAN1	KIT	NTHL1	RAD51B	SLC45A2	XPA
BAP1	CHEK1	FANCA	LZTR1	PALB2	RAD51C	SLX4	XPC
BARD1	CHEK2	FANCB	МАХ	PALLD	RAD51D	SMAD4	XRCC2
BLM	CTNNA1	FANCC	MEN1	PAX5	RAD54L	SMARCA4	XRCC3
BMPR1A	CYLD	FANCD2	MET	PDGFRA	RB1	SMARCB1	
BRCA1	DDB2	FANCE	MITF	PHOX2B	RECQL	SMARCE1	
BRCA2	DICER1	FANCF	MLH1	PMS1	RECQL4	SRGAP1	
BRIP1	DIS3L2	FANCG	MLH3	PMS2	RET	STK11	
BUB1B	EGFR	FANCI	MRE11	POLD1	RHBDF2	SUFU	
CBL	ELAC2	FANCL	MSH2	POLE	RINT1	TERT*	
CD82	ENG	FANCM	MSH3	POT1	RNASEL	TGFBR2	
CDC73	EPCAM	FH	MSH6	PPP2R2A	RNF43	TMEM127	
CDH1	ERCC2	FLCN	MSR1	PRF1	RUNX1	TP53	

HEREDITARY CANCER GENES FOR DELETION/DUPLICATION ANALYSIS BY DIGITAL MLPA (30 Genes)							
MUTYH	BARD1	APC	BMPR1A	POLE	CDH1	RAD51C	CHEK2
EPCAM	MLH1	PMS2	PTEN	BRCA2	TP53	BRIP1	GREM1
MSH2	BAP1	NBN	АТМ	SCG5	RAD51D	SMAD4	
MSH6	MITF	CDKN2A	CDK4	PALB2	BRCA1	STK11	

Talk to the Experts

& 1800 103 3691

Magnostics@medgenome.com

www.medgenome.com